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Abstract

The boundary element method (BEM) has been used to investigate the two-dimensional temperature distribution

and the flow of heat from a polygonal fin with two tubes on a square pitch. This numerical method is shown to be con-

vergent, stable and consistent. The resultant heat flows from the fin and the tubes are presented in the form of fin per-

formance ratios. The values of the two-dimensional fin performance ratios are almost identical to those obtained for a

single radial rectangular fin of equivalent surface area. The one-dimensional fin performance indicators, fin perfor-

mance ratio or fin efficiency can be used to predict the heat flows. However, the two-dimensional temperature distribu-

tions have revealed the existence of conductive paths between the two tubes depending upon the fin dimensions, the

values of the heat transfer and material thermal conductivity, and the magnitude of the temperature differences between

the two tubes and the surrounding air.
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1. Introduction

Heat exchangers (evaporators and condensers) are

integral parts of vapour-compression refrigeration sys-

tems. Many of these heat exchangers employ extended

surfaces on the air side comprising spaced thin metal

sheets (normally either 0.2 mm or 0.4 mm thick) with
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tubes passing through each sheet. In these exchangers

the evaporation or condensation occurs within the tubes

and air flows between the sheets and over the tubes. The

film heat transfer coefficient on the air side is normally

two orders of magnitude smaller than the condensing

or evaporating coefficients and without the extended

surface arrangement would dominate the overall coeffi-

cient and result in very large units. The metal sheets pro-

vide considerable extra area on the air side and hence the

combined film coefficient and additional area reduce the

air side thermal resistance so that much larger overall

heat coefficients are obtained and thus smaller exchang-

ers may be employed. The sheets are mechanically

stamped to produce a regular array of circular holes in
ed.
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Nomenclature

A, B, C matrices corresponding to the boundary ele-

ment discretisation

Bi transverse Biot number

err(PR) relative percentage error in evaluating the

fin performance ratio

E fundamental solution for the modified

Helmholtz equation

f right-hand side vector of the discretised sys-

tem

H ð1Þ
0 Hankel function of the first kind of order

zero

I0 modified Bessel function of the first kind of

order zero

I1 modified Bessel function of the first kind of

order one

K0 modified Bessel function of the second kind

of order zero

K1 modified Bessel function of the second kind

of order one

l length of the equivalent radial rectangular

fin [m]

l (s) length of the square rectangular fin [m]

L(s) length of the non-dimensionalised square fin

N, Ni1, Ni2, N0 numbers of boundary elements

PR fin performance ratio
_Q heat flow if the fin was not attached to the

primary surface [W]
_Qf heat flow through the fin [W]

_Q
ð1Þ
f ; _Q

ð2Þ
f calculated heat flows through the fin [W]

_Qf ;max maximum possible heat flow through the fin

[W]

r(X, Y) distance between the load point X and the

field point Y

ri inner radius of the fin (outer radius of the

tube) [m]

rðrÞo outer radius of the equivalent radial rectan-

gular fin [m]

rðsÞo radius of the circle which encloses the square

fin [m]

Ri inner radius of the non-dimensionalised fin

RðrÞ
o outer radius of the equivalent non-dimen-

sionalised radial rectangular fin

RðsÞ
o radius of the circle which encloses the non-

dimensionalised square fin

R real number set

T 1
b; T 2

b fin base (tube) temperatures [�C]
Tf fin temperature [�C]
T1 ambient medium temperature [�C]

x vector containing the unknown boundary

values of the non-dimensional temperature

and flux at the collocation points

x, y, X, Y space variables

Xm collocation point/node

Yi1
n�1, Yi1

n endpoints of the boundary element eCðnÞ
1i

Yi2
n�1, Yi2

n endpoints of the boundary element eCðnÞ
2i

Yo
n�1, Yo

n endpoints of the boundary element eCðnÞ
o

Greek symbols

a convective heat transfer coefficient

[W m�2 K�1]

df half-fin thickness [m]

dmn Kronecker delta symbol

gf fin efficiency

u vector containing the discretised non-dimen-

sional boundary flux

; empty set

oX boundary of the solution domain X
oeX boundary of the non-dimensionalised solu-

tion domain eX
Ci1, Ci2, Co parts of the boundary of the solution do-

main XeCi1; eCi2; eCo parts of the boundary of the non-dimen-

sionalised solution domain eXeCðnÞ
i1 ; eCðnÞ

i2 ; eCðnÞ
o ; eCn boundary elements

kf thermal conductivity of the fin [W m�1 K�1]

m unit outward normal vector to the boundary

Coem unit outward normal vector to the boundaryeCo

X solution domaineX non-dimensionalised solution domain

h vector containing the discretised non-dimen-

sional boundary temperature

hf non-dimensional fin temperature

ff fin effectiveness

fmax maximum fin effectiveness

Subscripts

m m component of a vector

nm (n, m) component of a second-order tensor

Superscripts

an analytical value

num numerical value
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either square or hexagonal arrangements. The excess

metal forms a predetermined rim, which results in the

spacing between adjacent sheets in the heat exchangers.
The sheets are automatically fed onto the set of tubes to

create the heat exchanger block. Finally, the tubes are

mechanically expanded to provide intimate contact
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between the tubes, the rims and the sheet. To complete

the heat exchanger, U bends are attached to the ends

of adjacent tubes in the block so that various flow paths

arrangements for the refrigerant within the tubes can be

obtained, see Fig. 1. Each sheet in the final heat exchan-

ger results in the so-called polygonal fin assembly, see

Marin et al. [1] and Kraus et al. [2]. Unlike many other

types of extended surfaces, the polygonal fin assembly

results in direct conductive paths between the tubes

passing through the sheet.

Unfortunately, all the sheet area is not fully utilised,

because the temperature difference between the sheet

and the air falls progressively from the base of the fin

(tube outer surface) to the outer regions of the fin geo-

metry. Design methods employ fin performance indica-

tors (fin efficiency [2–4], fin effectiveness [5] and more

recently, fin performance ratio [6]) to accommodate this

phenomenon of under-utilisation of the additional area

in the evaluation of the thermal resistance on the air

side. Fin performance indicators that allow for the

two-dimensional temperature distributions within

polygonal fins do not exist and designers must resort

to approximate techniques. However, these techniques

do not attempt to consider the two-dimensionality (ra-

dial and angular) of the heat flow and the presence of

other tubes in the assembly.

The theory of heat flow along fins attached to a pri-

mary surface at one end only has been thoroughly inves-

tigated, see e.g. the pioneering work of Harper and

Brown [7] and the classical book of Kraus et al. [2].

However, the analysis of fin problems is conventionally

based on the assumption that the heat flow is uni-direc-

tional because this fact, in general, facilitates an analyt-

ical treatment, see e.g. Gardner [3,4] and Mikk [8]. The

early investigations into the applicability of the one-

dimensional approximation restricted attention solely

to the fin and concluded that two-dimensional effects

are negligible provided that the transverse Biot number
Fig. 1. Photograph of a fin exchanger block.
(Bi = adf/kf) is much less than unity, see Irey [9], Levitsky

[10] and Lau and Tan [11]. However, later investigations

of the combined fin and supporting surface, see e.g.

Sparrow and Lee [12], Suryanarayana [13] and Heggs

and Stones [14], have shown that the presence of fins in-

duces transverse two-dimensional effects within the sup-

porting surface and these may in turn act to produce

two-dimensional variations within the fin. However,

the two-dimensional transverse effects were found to

occur only in long fins, when the coupled wall and fin

models were investigated. The previous investigators

have only considered the two-dimensional effects in a

single fin with the base held at a fixed temperature. This

lead to the conclusion that two-dimensional effects occur

in short fins, whereas they occur near the base of very

long fins and for these fins, the heat flow through the

wall will be relatively large.

For polygonal fin assemblies, the relative length of

the fins is short and so transverse conduction effects

can be ignored. However, it is essential that multi-

dimensional analysis in the other two directions of the

fin surface is considered when developing performance

indicators for the effective design of heat exchangers.

Suryanarayana [13] has reported that the difference be-

tween heat transfer rates can be as much as 80%. It is

therefore essential for the effective design of heat

exchangers using polygonal fin assemblies to employ a

multi-dimensional analysis.

In this paper, we extend the study of a single isolated

polygonal fin on hexagonal and square pitches per-

formed by Marin et al. [1] to the case of two tubes at dif-

ferent temperatures passing through a rectangular fin,

see Fig. 2 which shows a photograph of polygonal fin

heat exchanger blocks with one and two tubes on a

square pitch produced by Elfin Technology Ltd. In the

previous study for the single isolated polygonal fin, it

was demonstrated that the two-dimensional temperature

distribution in square and hexagonal fins, and the result-

ing heat flow from the fins, could be predicted by a one-
Fig. 2. Photograph of polygonal fin heat exchanger blocks with

one and two tubes on a square pitch produced by Elfin

Technology Ltd.
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dimensional radial rectangular fin with the equivalent

surface area of the polygonal fins. Consequently, the

conduction/convection problem for square fin assem-

blies is solved numerically by employing a convergent,

stable and consistent two-dimensional boundary ele-

ment method (BEM) based algorithm. The performance

of a particular heat exchanger for which detailed exper-

imental data is available [18] is predicted and compared

in the normal energy procedure taking the equivalent ra-

dial fin with an adiabatic condition on the outer radius.

Moreover, the isotherms corresponding to the geometry

under investigation are also presented.
2. Mathematical formulation

From a geometrical point of view, square fins are

characterised by the inner radius (the outer radius of

the tube), ri, the radius of the circle which encloses the

square fin, rðsÞo , the fin length, lðsÞ ¼ rðsÞo � ri, see Fig. 3,

and the half-fin thickness, df. We also consider the cor-

responding equivalent radial rectangular fin which has

the same surface area, inner radius and thickness as

the square fin under investigation, the outer radius,

rðrÞo , such that rðrÞo ¼
ffiffiffiffiffiffiffiffi
2=p

p
rðsÞo , and the fin length l ¼

rðrÞo � ri.
In this study, we restrict ourselves to a polygonal fin

assembly consisting of two neighbouring tubes on a

square pitch arrangement. The theoretical model is

based on the following assumptions which are com-

monly made for the analysis of fin heat transfer regard-

less of the fin assembly geometry, see [2–4,15],

(i) The heat transfer through the fin assembly is at

steady state and, in addition, there is no heat gen-

eration in the fin material.
(s)ro

ri

O x1

x2

ν

√ r (s)
o2r (s)

o√2-

-

Tb
1

fT =Γ1i :

Tb
2

fT =Γ2i :

fT =∂ ∂ν/ 0Γo:
r (s)
o √2/

r (s)
o √2/

Fig. 3. Sketch of the polygonal fin assembly under investi-

gation.
(ii) The fin assembly transfers heat to the ambient

medium solely due to convection and the coeffi-

cient of convective heat transfer, a, is uniform

over the entire fin assembly surface.

(iii) The temperature of the ambient medium, T1, is

uniform and constant over the fin assembly

surface.

(iv) The material is of constant thermal conductivity,

kf.
(v) The surface temperatures of the tubes, T 1

b P T 2
b,

are constant.

(vi) Based on the thin fin assumption, the temperature

variation in the fin assembly normal to its surface

is neglected.

Let X¼ð�
ffiffiffi
2

p
rðsÞo ;

ffiffiffi
2

p
rðsÞo Þ�ð�rðsÞo =

ffiffiffi
2

p
;rðsÞo =

ffiffiffi
2

p
ÞnðXi1[

Xi2Þ � R2 be the two-dimensional open bounded domain

occupied by the square fin assembly under investigation,

where Xi1 ¼ fx ¼ ðx1; x2Þ j ðx1 � rðsÞo =
ffiffiffi
2

p
Þ2 þ x22 6 r2i g

and Xi2 ¼ fx ¼ ðx1; x2Þ j ðx1 þ rðsÞo =
ffiffiffi
2

p
Þ2 þ x22 6 r2i g are

the domains occupied by the tubes, with the boundary

oX = Ci1 [ Ci2 [ Co, Ci1 \ Co = Ci2 \ Co = Ci1 \ Ci2 = ;,
Ci1 = oXi1, Ci2 = oXi2 and Co ¼ f�

ffiffiffi
2

p
rðsÞo g � ð�rðsÞo =

ffiffiffi
2

p
;

rðsÞo =
ffiffiffi
2

p
Þ [ ð�

ffiffiffi
2

p
rðsÞo ;

ffiffiffi
2

p
rðsÞo Þ � f�rðsÞo =

ffiffiffi
2

p
g.

The governing partial differential equation for the

two-dimensional temperature distribution Tf(x) can be

derived as follows:

o
2T fðxÞ
ox21

þ o
2T fðxÞ
ox22

� a
kfdf

T fðxÞ � T1ð Þ ¼ 0; x 2 X.

ð1Þ

The boundary conditions for the two-dimensional fin

assembly temperature are given by isothermal condi-

tions at the base of each square fin, Ci1 and Ci2,

T fðxÞ ¼
T 1

b; x 2 Ci1;

T 2
b; x 2 Ci2;

(
T 1

b P T 2
b; ð2Þ

and at the tip of the fin assembly, Co, by assuming the

heat transfer from the fin assembly tip to the surround-

ing ambient medium to be negligible (adiabatic condi-

tion) due to its very small thickness

oT fðxÞ
om

¼ 0; x 2 Co; ð3Þ

where m(x) is the outward normal vector at the boundary

Co.

On introducing the following dimensionless variables

and parameters, see [1,5,16]:

X j ¼
1

fmax

xj
df

� �
; j ¼ 1; 2; fmax ¼

ffiffiffiffiffiffiffi
kf
adf

s
;

hfðX Þ ¼ ðT fðxÞ � T1Þ=ðT 1
b � T1Þ;

ð4Þ
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the governing partial differential equation (1) and the

boundary conditions (2) and (3) can be recast in non-

dimensional and homogeneous form as follows:

o2hfðX Þ
oX 2

1

þ o2hfðX Þ
oX 2

2

� hfðX Þ ¼ 0; X 2 eX; ð5Þ

hfðX Þ ¼
1; X 2 eCi1;

ðT 2
b � T1Þ= T 1

b � T1
� �

6 1; X 2 eCi2;

(
ð6Þ

ohfðX Þ
oem ¼ 0; X 2 eCo. ð7Þ

Here eX; eXi1; eXi2; eCi1; eCi2; eCo and em are the trans-

formed domains X, Xi1 and Xi2, inner boundaries Ci1

and Ci2, outer boundary Co and outward normal m at

the boundary Co, respectively, obtained using the change

of variables given by Eq. (4), i.e.

eX ¼ �
ffiffiffi
2

p
RðsÞ
o ;

ffiffiffi
2

p
RðsÞ
o

� �
� �RðsÞ

o =
ffiffiffi
2

p
;RðsÞ

o =
ffiffiffi
2

p� �
n eXi1 [ eXi2

� �
� R2; ð8Þ

eXi1 ¼ X ¼ ðX 1;X 2Þ X 1 � RðsÞ
o =

ffiffiffi
2

p� �2
���� þ X 2

2 6 R2
i

	 

;

ð9Þ

eXi2 ¼ X ¼ ðX 1;X 2Þ X 1 þ RðsÞ
o =

ffiffiffi
2

p� �2
���� þ X 2

2 6 R2
i

	 

;

ð10Þ

oeX ¼ eCi1 [ eCi2 [ eCo; eCi1 \ eCo ¼ eCi2 \ eCo

¼ eCi1 \ eCi2 ¼ ;; eCi1 ¼ oeXi1; eCi2 ¼ oeXi2; ð11Þ

eCo ¼ �
ffiffiffi
2

p
RðsÞ
o

n o
� �RðsÞ

o =
ffiffiffi
2

p
;RðsÞ

o =
ffiffiffi
2

p� �
[ �

ffiffiffi
2

p
RðsÞ
o ;

ffiffiffi
2

p
RðsÞ
o

� �
� �RðsÞ

o =
ffiffiffi
2

pn o
; ð12Þ

RðsÞ
o ¼ rðsÞo = dffmaxð Þ; Ri ¼ ri=ðdffmaxÞ. ð13Þ

It should be mentioned that the non-dimensional

variables Xj and hf, as well as the dimensionless para-

meters fmax and xj/df, given by relation (4) occur in a na-

tural manner in the non-dimensionalisation process of

the governing equation (1), in the sense that the heat

transfer/conduction dimensional group a/(kfdf) in Eq.

(1) has the dimension m�2. Hence the dimensionless

length variables, Xj, are obtained by multiplying the

length variables xj by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=ðkfdfÞ

p
. In order to obtain

dimensionless variables for the problem, the aspect ra-

tios for the fin geometry, xj/df, are used which then re-

sults in the dimensionless parameter
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kf=ðadfÞ

p
, the so

called maximum fin effectiveness for a planar rectangu-

lar fin, see Heggs [5], and for a radial rectangular fin,

Heggs and Ooi [16]. It is interesting to note that the
maximum fin effectiveness equation is equivalent to the

reciprocal of the square root of the transverse Biot num-

ber, that is Bi�1/2. Furthermore, it should be noted that

the governing non-dimensionalised equation (5) is a

Helmholtz-type equation, namely the modified Helm-

holtz equation. Although the boundary value problem

given by Eqs. (5)–(7) is a direct, mixed, well-posed prob-

lem, its closed form analytical solution is not available

even if the outer boundary is a circle, i.e. eCo ¼
fX ¼ ðX 1;X 2Þ j X 2

1 þ X 2
2 ¼ R2

og. Hence a numerical

method to solve the boundary value problem (5)–(7)

must be employed.
3. Fin performance indicators

In this section, the performance indicators of the fins

are briefly reviewed in the framework of the two-dimen-

sional analysis. In the steady state, the heat flow through

the fin, _Qf , is obtained from the temperature profile

either by considering the heat flow through the base of

the fins or by integrating the heat flow from the domain

occupied by the fin, see [2–5,15], namely

_Q
ð1Þ
f ¼ �kfð2dfÞ

Z
Ci1[Ci2

oT fðxÞ
om

dSðxÞ

¼ �kfð2dfÞðT 1
b � T1Þ

Z
eC i1[eC i2

ohfðX Þ
oem dSðX Þ; ð14Þ

or

_Q
ð2Þ
f ¼ 2a

Z Z
X
ðT fðxÞ � T1Þdx

¼ kfð2dfÞðT 1
b � T1Þ

Z Z
eX hfðX ÞdX . ð15Þ

The maximum possible heat flow through the fin, de-

noted by _Qf ;max, is obtained by either substituting the

(dimensionless) temperature gradient into Eq. (14), or

substituting the (dimensionless) temperature into Eq.

(15), and taking the limit of the corresponding integrals

as the (dimensionless) fin length lðsÞ ¼ rðsÞo � riðLðsÞ ¼
RðsÞ
o � RiÞ tends to infinity. Equations (14) and (15) both

lead to the following expression:

_Qf ;max ¼ 4pri
ffiffiffiffiffiffiffiffiffiffiffi
akfdf

p
T 1

b � T1
� ��

þ T 2
b � T1

� ��K1ðri=ðdffmaxÞÞ
K0ðri=ðdffmaxÞÞ

. ð16Þ

This is equivalent to two independent tubes with polyg-

onal fins of infinite dimensions attached to them. The

maximum heat flow for each fin is identical to that found

by Marin et al. [1] for the single polygonal fin. This is

identical to the maximum heat flow that would occur

for a one-dimensional radial rectangular fin, see Heggs

and Ooi [16]. The ratio of the modified Bessel functions

of the second kind of orders one and zero in Eq. (16) is

plotted against the common arguments in Fig. 4. If the
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Fig. 4. The ratio between the modified Bessel functions K1 and

K0 as a function of the non-dimensional parameter ri/(dffmax).
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argument is greater than about 10 then the ratio can be

taken to be unity. However, for small values of the argu-

ment, the value of the ratio quickly becomes quite large,

such that for an argument value of 1.0 · 10�3, the ratio

is approximately 150.

The heat flow from the polygonal fins is bounded as

follows:

_Qf;lðsÞ!ð
ffiffi
2

p
�1Þri <

_Qf < _Qf;max. ð17Þ

The lower bound occurs as the fin length lðsÞ !
ð

ffiffiffi
2

p
� 1Þri, or rðsÞo !

ffiffiffi
2

p
ri. Here the polygonal fin is a

square of side 2ri ¼
ffiffiffi
2

p
rðsÞo and the tubes touch the

square at the midpoints of each side. The adiabatic

boundary conditions imposed at the tip of the fin, see

Eq. (3), will ensure that the solution does have a singu-

larity where the two tubes coincide for this limiting con-

dition. It should be mentioned that in Marin et al. [1] it

was shown that the heat flow from a single isolated

polygonal fin in this limiting case is approximated with

an error of O(10�4) by the one corresponding to a radial

rectangular fin in the framework of the one-dimensional

theory.

A fin performance ratio, PR, for these polygonal fins

with two tubes passing through them can be defined in

an identical manner to that recently proposed for iso-

lated fins, see e.g. [1,5,6,16], namely

PR ¼
_Qf

_Qf ;max

. ð18Þ

The fin performance ratio is bounded as follows:

_Qf;lðsÞ!ð
ffiffi
2

p
�1Þri

_Qf;max

< PR < 1. ð19Þ

Hence the introduction of the fin performance ratio pro-

vides an indicator which has an upper bound of unity,

whilst the lower bound is dependent upon the ratio of
the heat flow through the smallest sized polygonal fin

(rðsÞo ¼
ffiffiffi
2

p
ri) and the maximum possible heat flow.

The most commonly used fin performance indicator,

the fin efficiency, gf, see e.g. [2–4], is defined as the ratio

of the heat flow through the fin to that which would flow

if all the fin surface was at the base temperature. Unfor-

tunately, if the two tubes have different temperatures

then an expression for the fin efficiency cannot be

obtained.

The fin performance indicator, the fin effectiveness, ff,
see e.g. [15,16], can be defined for the polygonal fins with

two tubes passing through them. The definition is the

ratio of the heat flow through the fin, _Qf , to that which

would flow to the primary surface (base area of the fin) if

the fin was not present, _Q, where

_Q ¼ 4pridfa T 1
b � T1

� �
þ T 2

b � T1
� �� �

. ð20Þ

Thus the fin effectiveness is given by

ff ¼
_Qf

_Q
; ð21Þ

and is bounded as follows:

1 < ff <
_Qf ;max

_Q
. ð22Þ

Unlike the fin performance ratio, the fin effectiveness

must be greater than unity, whilst the upper bound is

given by the ratio of Eqs. (16) and (20), namely

_Qf ;max

_Q
¼

ffiffiffiffiffiffiffi
kf
adf

s
K1ðri=ðdffmaxÞÞ
K0ðri=ðdffmaxÞÞ

� fmax

K1ðri=ðdffmaxÞÞ
K0ðri=ðdffmaxÞÞ

. ð23Þ

It is worth mentioning that K1/K0 ! 1 as ri/(dffmax)!
1 and, therefore, the one-dimensional model represents

a very good approximation to the governing partial dif-

ferential equation (1) for the temperature distribution in

the polygonal fin assemblies under investigation. From

the physical point of view this means that more heat

passes through short radial rectangular fins than

through the equivalent rectangular fins. It is interesting

to note that in Eq. (23), the maximum fin effectiveness,

fmax, for an isolated planar rectangular fin appears along

with the ratio of the Bessel functions K1/K0. This fmax

was used in the two-dimensional non-dimensionalisation

procedure, see Eq. (4). The fin performance ratio, PR, is

related to the fin effectiveness, ff, as follows:

PR ¼ ff fmax

K1ðri=ðdffmaxÞÞ
K0ðri=ðdffmaxÞÞ

� �

. ð24Þ

The equivalent one-dimensional radial rectangular fin

with isothermal (T f ¼ T 1
b) and adiabatic conditions at

its base and tip, respectively, has the following expres-

sions for the heat flow, the maximum heat flow and

the fin performance ratio:
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_Qf ¼ 4pri
ffiffiffiffiffiffiffiffiffiffiffi
akfdf

p
T 1

b � T1
� �

�
K1

ri
dffmax

� �
I1

rðrÞo

dffmax

� �
� I1

ri
dffmax

� �
K1

rðrÞo

dffmax

� �
K0

ri
dffmax

� �
I1

rðrÞo

dffmax

� �
þ I0

ri
dffmax

� �
K1

rðrÞo

dffmax

� �
¼ 4pRidfkf T 1

b � T1
� �K1ðRiÞI1ðRðrÞ

o Þ � I1ðRiÞK1ðRðrÞ
o Þ

K0ðRiÞI1ðRðrÞ
o Þ þ I0ðRiÞK1ðRðrÞ

o Þ
;

ð25Þ

_Qf ;max ¼ 4pri
ffiffiffiffiffiffiffiffiffiffiffi
akfdf

p
T 1

b � T1
� �K1

ri
df fmax

� �
K0

ri
df fmax

� �
¼ 4pRidfkf T 1

b � T1
� �K1ðRiÞ

K0ðRiÞ
; ð26Þ

PR¼
_Qf

_Qf ;max

¼ 1�K1ðRðrÞ
o Þ

K1ðRiÞ



I1ðRiÞ
I1ðRðrÞ

o Þ

( ),
1þK1ðRðrÞ

o Þ
K0ðRiÞ



I1ðRiÞ
I0 RðrÞ

o

� �( )
.

ð27Þ
Here I0 and I1 are the modified Bessel functions of the

first kind of orders zero and one, respectively, whilst

K0 and K1 are the modified Bessel functions of the sec-

ond kind of orders zero and one, respectively.

By an appropriate regrouping of the problem param-

eters involved in expression (27) for the fin performance

ratio in the one-dimensional theory, it can be seen that

this performance indicator is a function of the ratio, ri/

df, of the inner radius and the half-thickness of the fin,

the reduced fin length, l=df ¼ ðrðrÞo � riÞ=df , and the max-

imum fin effectiveness, fmax, i.e. PR = PR(ri/df, l/df,
fmax). Since the first two parameters of the problem (ri/

df, l/df) contain information on the geometry of the fin

and the last one (fmax) directly reflects the physics of

the heat flow through the fin, the fin performance ratio

is expected to be a comprehensive performance indicator

of the fin under consideration in both one- and two-

dimensional theories. On combining expressions (25)–

(27) we obtain the following expression for the heat flow

through the fin, see also Marin et al. [1],

_Qf ¼ 4pridfaPRðri=df ; l=df ; fmaxÞ T 1
b � T1

� �
� K1ðri=ðdffmaxÞÞ
K0ðri=ðdffmaxÞÞ

: ð28Þ

Consequently, it would be convenient if the two-dimen-

sional heat flow could be predicted within an acceptable

tolerance by using the one-dimensional theory. Then,

the heat flow, _Qf , and the maximum possible heat

flow, _Qf ;max, corresponding to the polygonal fin assembly

under investigation, respectively, could be predicted

by
_Qf ¼ 4pri
ffiffiffiffiffiffiffiffiffiffiffi
akfdf

p X2

j¼1

T j
b � T1

� �

�
K1

ri
dffmax

� �
I1

rðrÞo

dffmax

� �
� I1

ri
dffmax

� �
K1

rðrÞo

dffmax

� �
K0

ri
dffmax

� �
I1

rðrÞo

dffmax

� �
þ I0

ri
dffmax

� �
K1

rðrÞo

dffmax

� �
¼ 4pRidfkf

X2

j¼1

T j
b � T1

� �
� K1ðRiÞI1ðRðrÞ

o Þ � I1ðRiÞK1ðRðrÞ
o Þ

K0ðRiÞI1ðRðrÞ
o Þ þ I0ðRiÞK1ðRðrÞ

o Þ
; ð29Þ

_Qf ;max ¼ 4pri
ffiffiffiffiffiffiffiffiffiffiffi
akfdf

p X2

j¼1

T j
b � T1

� �K1
ri

df fmax

� �
K0

ri
df fmax

� �
¼ 4pRidfkf

X2

j¼1

T j
b � T1

� �K1ðRiÞ
K0ðRiÞ

; ð30Þ

Moreover, from Eqs. (27), (29) and (30) we obtain the

following expression for the heat flow through the

polygonal fin assembly

_Qf ¼ 4pridfaPR ri=df ; l=df ; fmaxð Þ

�
X2

j¼1
T j

b � T1
� �K1 ri= dffmaxð Þð Þ

K0 ri= dffmaxð Þð Þ : ð31Þ

The above expression would be of considerable practical

importance for determining the value of the heat flow,
_Qf , through a polygonal fin assembly characterised by

the coefficient of convective heat transfer, a, the thermal

conductivity, kf, the half-thickness, df, the inner radius,

ri, and the fin length, lðsÞ ¼ rðsÞo � ri, by using the design

charts for the prediction of the performance ratio, PR,

of equivalent radial rectangular fins, i.e. radial rectangu-

lar fins characterised by the same coefficient of convec-

tive heat transfer, thermal conductivity, half-fin

thickness and inner radius and the fin length l ¼
rðrÞo � ri, such that rðrÞo ¼

ffiffiffiffiffiffiffiffi
2=p

p
rðsÞo , see Fig. 5, and the

graph of the function K1/K0, see Fig. 4. Furthermore,

the charts for the prediction of the fin performance ratio

give very good information on the fin performance, the

geometry (dimensions) of the fin and the fin material.

More specifically, from Fig. 5 it can be seen that such

a design chart consists of three specific regions. The first

one which is located above the graph of the function

PR = 0.99, say, corresponds to very long fins, i.e. too

much material has been used for the fin. The region

below the graph of the function PR = 0.01, say, charac-

terises fins made of materials having properties unsuit-

able for design purposes. Finally, the region between

the graphs of the functions PR = 0.01 and PR = 0.99 is

of practical importance and gives the designers compre-

hensive information on both the geometry of the fin and

the physics of the heat flow through the fin. It should be



Fig. 5. Design chart for the prediction of the performance ratio PR of radial rectangular fins with ri = 7.0 · 10�3 m and

df = 0.2 · 10�3 m.
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mentioned that the normal practice is to use a fin effi-

ciency with a value greater than 0.80 and this will corre-

spond to a fin performance ratio with a value of around

0.40 or less. Consequently, the fin performance ratio,

PR, is a better fin performance indicator than the fin effi-

ciency, gf.
4. The boundary element method

The governing non-dimensionalised partial differen-

tial equation (5) can also be formulated in integral form,

see e.g. Chen and Zhou [17], as follows:

cðX ÞhfðX Þ þ
Z
oeX oEðX ; Y Þ

oem hfðY ÞdSðY Þ

¼
Z
oeX EðX ; Y Þ ohfðY Þ

oem dSðY Þ ð32Þ

for X 2 eX [ oeX, where c(X) = 1 for X 2 eX and c(X) =

1/2 for X 2 oeX (smooth), and E is the fundamental

solution for the modified Helmholtz equation (5), which

is given by

EðX ; Y Þ ¼ 1

2p
K0 rðX ; Y Þð Þ. ð33Þ

Here r(X, Y) represents the distance between the load

point X and the field point Y. Alternatively, one can also

use the real part of the complex fundamental solution E

for the modified Helmholtz equation in the boundary

integral equation (32), namely

EðX ; Y Þ ¼ Re
i

4
H ð1Þ

0 irðX ; Y Þð Þ
	 


; ð34Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
and H ð1Þ

0 is the Hankel function of the

first kind of order zero.
It should be noted that in practice the boundary inte-

gral equation (32) can rarely be solved analytically and

thus a numerical approximation is required. A BEM

with piecewise constant boundary elements is used in

order to solve the direct, mixed, well-posed boundary

value problem (5)–(7). Consequently, the outer bound-

ary eCo is approximated by No straight line segments in

a counterclockwise sense and the inner boundaries eCi1

and eCi2 are approximated by Ni1 and Ni2 straight line

segments, respectively, in a clockwise sense, such that

the boundary oeX is discretised into N = No + Ni1 + Ni2

boundary elements, whilst the non-dimensional temper-

ature and the non-dimensional flux are considered to be

constant and take their values at the midpoint, i.e. the

collocation point, also known as the node, of each ele-

ment. More specifically, we have

eCo �
[No

n¼1

eCðnÞ
o ; eCðnÞ

o ¼ Y o
n�1; Y o

n
� �

;

n ¼ 1; . . . ;No; Y o
No ¼ Y o

0;

eCi1 �
[Ni1

n¼1

eCðnÞ
i1 ;

eCðnÞ
i1 ¼ Y i1

n�1; Y i1
n

� �
;

n ¼ 1; . . . ;Ni1; Y i1
Ni1 ¼ Y i1

0;

eCi2 �
[Ni2

n¼1

eCðnÞ
i2 ;

eCðnÞ
i2 ¼ Y i2

n�1; Y i2
n

� �
;

n ¼ 1; . . . ;Ni2; Y i2
N2 ¼ Y i2

0;

ð35Þ

where

Xn ¼ Y o
n�1 þ Y o

n
� �

=2; n ¼ 1; . . . ;No;

XNoþn ¼ Y i1
n�1 þ Y i1

n
� �

=2; n ¼ 1; . . . ;Ni1;

XNoþNi1þn ¼ Y i2
n�1 þ Y i2

n
� �

=2; n ¼ 1; . . . ;Ni2;

ð36Þ
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and

hfðY Þ ¼ hfðXnÞ; ohfðY Þ
oem ¼ ohfðXnÞ

oem ; Y 2 eCn;

n ¼ 1; . . . ;N ; ð37Þ

where eCn ¼ eCðnÞ
o for n = 1, . . . ,No, eCNoþn ¼ eCðnÞ

i1 for

n = 1, . . . ,Ni1 and eCNoþNi1þn ¼ eCðnÞ
i2 for n = 1, . . . ,Ni2.

By applying the boundary integral equation (32) at

each collocation point Xm, m = 1, . . . ,N, and taking into

account the fact that the boundary is always smooth at

these points, we arrive at the following system of linear

algebraic equations

Ah ¼ Bu; ð38Þ
where the matrices A;B 2 RN�N depend solely on the

geometry of the boundary oeX and the vectors

h;u 2 RN consist of the discretised values of the non-

dimensional temperature and flux on the boundary

oeX, namely

hm ¼ hfðXmÞ; um ¼ ohfðXmÞ
oem ; m ¼ 1; . . . ;N ; ð39Þ

Anm ¼ 1

2
dnm þ AnðXmÞ ¼ 1

2
dnm þ

Z
eCn

oEðXm; Y Þ
oem dSðY Þ;

m; n ¼ 1; . . . ;N ; ð40Þ

Bnm ¼ BnðXmÞ ¼
Z
eCn

EðXm; Y ÞdSðY Þ;

m; n ¼ 1; . . . ;N ; ð41Þ
where dnm is the Kronecker tensor. It should be noted

that Eq. (38) represents a system of N linear algebraic

equations with 2N unknowns. The discretisation of the

boundary conditions (6) and (7) provides the values of

N of the unknowns and the problem reduces to solving

a system of N equations with N unknowns which can

be generically written as follows:

Cx ¼ f ; ð42Þ

where the right-hand side vector f 2 RN is computed

using the boundary conditions (6) and (7), the system

matrix C 2 RN�N depends solely on the geometry of

the boundary oeX and the vector x 2 RN contains the un-

known values of the non-dimensional temperature on

the outer boundary eCo and the non-dimensional flux

on the inner boundaries eC i1 and eCi2.

Once the unknown values of the non-dimensional

temperature and flux on the outer and inner boundaries,

respectively, have been computed then by employing the

discretisation of the boundary integral equation (32) for

internal points X 2 eX, the BEM approximation of the

non-dimensional temperature hf can be obtained at

any internal point in the form

hfðX Þ ¼
XN
n¼1

BnðX Þun � AnðX Þhnf g; ð43Þ
where An(X) and Bn(X) are given by relations (40) and

(41), respectively, with Xm = X.
5. Numerical results

The numerical analysis presented in this section for

the square fin assembly is based on typical geometries

and operating conditions used in evaporators and con-

densers in commercial refrigeration storage units, see

e.g. Rizvi [18]. We illustrate the numerical results ob-

tained using the BEM described in the previous section

by investigating the convergence, stability and consis-

tency of the numerical method proposed. In addition,

the performance of the square fin assembly is studied

in the two-dimensional approach by comparing the per-

formance ratio and the heat flow through the square fin

assembly corresponding to the expressions (14) and (15),

respectively, with their values obtained by considering

the one-dimensional theory for two radial fins equiva-

lent with each of the two square fins which compose

the fin assembly under investigation, see Eqs. (27) and

(31). To do so, we consider polygonal fins on a square

pitch characterised by the inner radius (outer radius of

the tube) ri = 7.0 · 10�3 m, the radius of the circle which

encloses a single square fin rðsÞo ¼ 28.49� 10�3m, the

half-fin thicknesses df = 0.1 · 10�3 m and df = 0.2 ·
10�3 m and the thermal conductivity kf = 202.4 W m�1

K�1, as well as the equivalent radial fin rðrÞo ¼ 22.74�
10�3m. In the sequel, the fin length is given by

l ¼ rðrÞo � ri, where rðrÞo is the outer radius of the equiva-

lent radial rectangular fin, the convective heat transfer

coefficient is given by a = 20.0 W m�2 K�1, T 1
b � T1 ¼

1 K and ðT 2
b � T1Þ=ðT 1

b � T1Þ 2 f0.10; 0.50; 0.90g in

order to illustrate the different temperatures of the tubes.

The solution to the boundary value problem (5)–(7)

by any technique which involves approximations in the

solution procedure invariably includes an error. In the

case of the BEM, the errors in the numerical solutions

are related to the associated mesh size, they diminish

as the mesh size discretisation is refined and, conse-

quently, the approximate solutions approach the exact

solution. Three levels of discretisation which are given

by the number of boundary elements used to discretise

the square fin assembly under investigation, namely

N 2 {100,200,400}, Ni1 = Ni2 = No/3 = N/5, are used in

order to check for the convergence of the proposed

BEM.

Fig. 6(a)–(c) represent the numerical non-dimen-

sional temperature distribution hf in the square fin

assembly with df = 0.1 · 10�3 m (l/df = 157.34 and

fmax = 318.11) and ðT 2
b � T1Þ=ðT 1

b � T1Þ 2 f0.10; 0.50;
0.90g, obtained with N = 400 boundary elements. From

the tube on the left in Fig. 6(a) it can be seen that if

ðT 2
b � T1Þ=ðT 1

b � T1Þ ¼ 0.10 then heat not only flows

from the hotter tube to the air, but also to the colder



(a)

(b)

(c)

Fig. 6. The non-dimensional temperature distribution, hf, in the

square fin assembly obtained using N = 400 boundary elements,

a = 20.0 W m�2 K�1, df = 0.1 · 10�3 m, ri = 7.0 · 10�3 m, rðsÞo ¼
28.49� 10�3 m, kf = 202.4 W m�1 K�1, i.e. l/df = 157.34 and

fmax = 318.11, (a) ðT 2
b � T1Þ=ðT 1

b � T1Þ ¼ 0.10, (b) ðT 2
b � T1Þ=

ðT 1
b � T1Þ ¼ 0.50 and (c) ðT 2

b � T1Þ=ðT 1
b � T1Þ ¼ 0.90.
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tube. The temperature of the fin around the colder tube

is completely above the temperature of the tube. Hence

the polygonal fin assembly for this condition has pro-

vided a conductive path between the two tubes even

though there is a finite temperature difference between

the tubes, the fin surface and the surrounding air. A sim-

ilar effect is observed from Fig. 6(b), but it is much less

severe and only a small portion of the fin surface around

the tube on the left is above the tube temperature. How-

ever, if the temperature difference between the tubes is

low, Fig. 6(c), i.e. ðT 2
b � T1Þ=ðT 1

b � T1Þ ¼ 0.90, then

the heat solely flows into the air. Similar results have

been obtained for square fin assemblies with df =
0.2 · 10�3 m and therefore they are not presented here.

Although an analytical solution is not available for the

examples under investigation, it is reported that the

BEM solutions for the non-dimensional temperature
display a convergent behaviour as the corresponding

discretisation is refined. Furthermore, from Fig. 6 it

can be seen that the non-dimensional temperature pro-

files in the square fin assembly are indeed two-dimen-

sional for different values of the ratio between the

temperatures of the tubes, and hence we can conclude

that the two-dimensional treatment of the square fin

assemblies is fully justified. In addition, since the bound-

ary conditions (6) and (7) contain the analytical values

of the non-dimensional temperature on the inner bound-

aries eCi1 and eCi2, and the flux on the outer boundary eCo,

respectively, then these boundary data are polluted with

numerical noise and therefore the numerical method

proposed is also stable.

In the context of numerical methods, such as finite-

difference, finite element and boundary element meth-

ods, the integrations from relations (14) and (15) can

be performed employing an appropriate quadrature for-

mula. However, as these numerical techniques only pro-

vide approximate solutions, the corresponding values

for the integrations in Eqs. (14) and (15) need not be ex-

actly the same, although, these should agree to within an

acceptable tolerance in order for the numerical solutions

to be satisfactory. Therefore, in the subsequent calcula-

tions _Q
ð1Þ
f and _Q

ð2Þ
f denote the values of the heat flow

through the square fin assembly corresponding to the

expressions (14) and (15), respectively. It is important

to mention that a further requirement for the numerical

solutions to be satisfactory is that the corresponding

heat flows through the square fin assembly under inves-

tigation show a convergent behaviour as the order of the

approximation is improved.

In Table 1 we present the values of the heat flows _Q
ð1Þ
f

and _Q
ð2Þ
f given by Eqs. (14) and (15), respectively, as well

as the performance ratio PR, see Eq. (18), obtained for

square fin assemblies with df = 0.1 · 10�3 m (l/df =
157.34 and fmax = 318.11), df = 0.2 · 10�3 m (l/df =
78.70 and fmax = 224.50), ðT 2

b � T1Þ=ðT 1
b � T1Þ 2

f0.10; 0.50; 0.90g and using the two-dimensional BEM

proposed in this study. For comparison, the analytical

values for the equivalent radial fin given by the one-

dimensional theory, i.e. expressions (25) and (27), are

also listed in Table 1. It can be seen from this table that

all the aforementioned fin performance indicators exhi-

bit convergence with respect to the mesh refinement

and the numerical results obtained for the heat flow

through the square fin assembly and the performance

ratio are very good approximations for their analytical

values of the equivalent radial rectangular fin. The

numerical technique proposed is also consistent, in the

sense that the difference between the computed heat

flows _Q
ð1Þ
f and _Q

ð2Þ
f is O(10�4) for all the thicknesses, ra-

tios between the temperatures of the tubes and discreti-

sations considered. Moreover, as further refinement of

the boundary discretisation is impractical, the limiting



Table 1

The 1D analytical, the 2D BEM and the corresponding Richardson�s extrapolation values for the heat flows _Q
ð1Þ
f and _Q

ð2Þ
f and the

performance ratio PR for the square fin assembly and the equivalent radial fin, obtained with df = 0.1 · 10�3 m (l/df = 157.34 and

fmax = 318.11), df = 0.2 · 10�3 m (l/df = 78.70 and fmax = 224.50) and ðT 2
b � T1Þ=ðT 1

b � T1Þ 2 f0.10; 0.50; 0.90g
df [m] T 2

b
�T1

T 1
b
�T1

Fin type Solution type _Q
ð1Þ
f

_Q
ð2Þ
f

PR

0.1 · 10�3 0.10 Radial (1D) Analytical 0.05649 0.05649 0.35394

Square (2D) N = 100 0.05634 0.05644 0.35297

N = 200 0.05634 0.05652 0.35300

N = 400 0.05634 0.05654 0.35301

Richardson�s extrapolation 0.05634 0.05655 0.35302

0.50 Radial (1D) Analytical 0.07703 0.07703 0.35394

Square (2D) N = 100 0.07682 0.07696 0.35297

N = 200 0.07683 0.07707 0.35300

N = 400 0.07683 0.07710 0.35301

Richardson�s extrapolation 0.07683 0.07711 0.35302

0.90 Radial (1D) Analytical 0.09758 0.09758 0.35394

Square (2D) N = 100 0.09731 0.09748 0.35297

N = 200 0.09731 0.09763 0.35300

N = 400 0.09732 0.09766 0.35301

Richardson�s extrapolation 0.09731 0.09767 0.35302

0.2 · 10�3 0.10 Radial (1D) Analytical 0.06028 0.06028 0.22152

Square (2D) N = 100 0.06023 0.06024 0.22135

N = 200 0.06020 0.06029 0.22123

N = 400 0.06019 0.06030 0.22121

Richardson�s extrapolation 0.06019 0.06030 0.22121

0.50 Radial (1D) Analytical 0.08220 0.08220 0.22152

Square (2D) N = 100 0.08213 0.08214 0.22135

N = 200 0.08209 0.08221 0.22123

N = 400 0.08208 0.08223 0.22121

Richardson�s extrapolation 0.08208 0.08224 0.22121

0.90 Radial (1D) Analytical 0.10412 0.10412 0.22152

Square (2D) N = 100 0.10404 0.10405 0.22135

N = 200 0.10398 0.10413 0.22123

N = 400 0.10397 0.10415 0.22121

Richardson�s extrapolation 0.10397 0.10416 0.22121
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values of _Q
ð1Þ
f ; _Q

ð2Þ
f and PR corresponding to the square

fin assemblies investigated in this study are computed by

the extrapolation of their BEM solutions obtained for

N 2 {100,200,400} and by employing Richardson�s for-
mula [19]. These values are very good approximations

for the heat flow, as well as for the performance ratio,

in all the cases analysed in this paper. However, it is re-

ported that the numerical results obtained for the fin

performance indicators in the case of square fin assem-

blies are less accurate than their numerical values

retrieved for a single polygonal fin on square pitches,

see [1].

It is interesting to note that the presence of conduc-

tive paths between the tubes observed in Fig. 6(a) and

(b) for ðT 2
b � T1Þ=ðT 1

b � T1Þ 2 f0.10; 0.50g does not af-

fect the heat transferred from the tubes and fins to the
air, when predicted by the one-dimensional theory.

The values of the fin performance ratios for the two-

dimensional numerical results and the one-dimensional

theory are virtually identical, irrespective of the temper-

atures of the two tubes. In the one-dimensional theory

postulation, Eq. (31), the two tubes are taken to be inde-

pendent of each other. Therefore, for conditions where

the conductive paths occur more heat is extracted

from the hotter tube to compensate for the heat flow

into the colder tube, but at the same time ensuring that

the heat flow to the surrounding air is equivalent to that

from the individual tubes and the polygonal fin assem-

bly. This has been verified by evaluating the heat flow

from each tube from the two-dimensional numerical

results using Eq. (14), but only for the individual tubes,

such that
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_Q
ð1Þ
f;h þ _Q

ð1Þ
f ;c ¼ _Q

ð1Þ
f ; ð44Þ

where _Q
ð1Þ
f ;h and _Q

ð1Þ
f ;c are the heat flows from the hotter

(tube 1) and the colder (tube 2) tubes, respectively. These

values are tabulated in Table 2 for all the cases detailed

in Table 1. These remarkable results have not been re-

ported before for polygonal fin assemblies.

The linearity of the mathematical representation

of this polygonal fin assembly with two tubes passing

through the fin, and the imposition of adiabatic

boundary condition on the edges of the fin, Eq. (7),

are responsible. Identical results for the heat flow

will be obtained if the problem is considered as a sin-

gle square fin with one tube passing through it, but

the tube temperature in this case is the summation of

the two individual tubes, i.e. h1 + h2. This phenomenon

is analogous to the detrimental transverse conduc-

tion paths found in plate-fin heat exchangers, where

the fin surfaces are attached at each end to the parting

sheets of each fluid channel. This is the so-called half-

fin length assumption, see Prasad [20] and Geraldelli

[21].
Table 2

The 2D BEM and the corresponding Richardson�s extrapolation value

assembly with df = 0.1 · 10�3 m (l/df = 157.34 and fmax = 318.1

ðT 2
b � T1Þ=ðT 1

b � T1Þ 2 f0.10; 0.50; 0.90g
df [m] T 2

b
�T1

T 1
b
�T1

Solution type

0.1 · 10�3 0.10 N = 100

N = 200

N = 400

Richardson�s extrapolation

0.50 N = 100

N = 200

N = 400

Richardson�s extrapolation

0.90 N = 100

N = 200

N = 400

Richardson�s extrapolation

0.2 · 10�3 0.10 N = 100

N = 200

N = 400

Richardson�s extrapolation

0.50 N = 100

N = 200

N = 400

Richardson�s extrapolation

0.90 N = 100

N = 200

N = 400

Richardson�s extrapolation
6. Investigation of the range of applicability of the use

of the one-dimensional analytical performance ratio for

a polygonal fin with two tubes on a square pitch

The results reported in Tables 1 and 2 are for two

polygonal fins with different thicknesses, df = 0.1 ·
10�3 m and df = 0.2 · 10�3 m, respectively. The other

dimensions and values of the heat transfer coefficient

and thermal conductivity are the same in both cases.

For the thicker fin, there are conductive paths between

the tubes for a wider range of the temperature differ-

ences between the two tubes than were obtained for

the thinner fin. The parameters for the second case are

ri/df = 35, l/df = 78.70 and fmax = 224.50, and the one-

dimensional value of the PR for the equivalent radial

rectangular fin was 0.22152. This is illustrated in Fig. 5

by the intersection of the dashed vertical and horizontal

lines corresponding to fmax = 224.50 and l/df = 78.70,

respectively.

In order to provide more confidence in the use of the

one-dimensional performance ratio of the equivalent ra-

dial rectangular fin for the prediction of the heat flow
s for the heat flows _Q
ð1Þ
f ; _Q

ð1Þ
f ;h and

_Q
ð1Þ
f ;c obtained for the square fin

1), df = 0.2 · 10�3 m (l/df = 78.70 and fmax = 224.50) and

_Q
ð1Þ
f

_Q
ð1Þ
f;h

_Q
ð1Þ
f ;c

0.05634 0.08308 �0.02671

0.05634 0.08324 �0.02690

0.05634 0.08328 �0.02695

0.05634 0.08329 �0.02697

0.07682 0.06890 0.00792

0.07683 0.06901 0.00783

0.07683 0.06903 0.00781

0.07683 0.06903 0.00781

0.09731 0.05475 0.04256

0.09731 0.05478 0.04254

0.09732 0.05478 0.04253

0.09731 0.05478 0.04252

0.06023 0.12676 �0.06653

0.06020 0.12708 �0.06688

0.06019 0.12716 �0.06697

0.06019 0.12719 �0.06700

0.08213 0.09476 �0.01263

0.08209 0.09492 �0.01283

0.08208 0.09497 �0.01289

0.08208 0.09499 �0.01291

0.10404 0.06276 0.04128

0.10398 0.06277 0.04121

0.10397 0.06277 0.04120

0.10397 0.06277 0.04120
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Fig. 7. (a) The analytical and the numerical values for the

performance ratio PR, and (b) the error err(PR), as functions

of l/df, obtained for the square fin assembly with a = 20.0

W m�2 K�1, df = 0.2 · 10�3 m, ri = 7.0 · 10�3 m, kf = 202.4

W m�1 K�1, i.e. fmax = 224.50 constant, ðT 2
b � T1Þ=

ðT 1
b � T1Þ ¼ 0.90 and N 2 {100,200,400} boundary elements.
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from the polygonal fins with two tubes on a square

pitch, we have investigated the relative percentage error

between the one- and two-dimensional predictions

over a wide range of values of the performance ratio.

The value of the temperature differences between the

two tubes ðT 2
b � T1Þ=ðT 1

b � T1Þ has been fixed at 0.90

and the PR range investigated is from 0.99 down

to 0.01. Two sets of calculations are reported here. In

the first case, fmax is kept constant at 224.50 and the as-

pect ratio l/df has been varied. This range can be seen by

the dashed vertical line in Fig. 5 and is l/df 2 (7.5,600).

In the second set of calculations, the aspect ratio l/df is
kept constant at 78.70 and the maximum fin effectiveness

fmax has been varied. This range is covered by the

dashed horizontal line in Fig. 5 and is given by

fmax 2 (30,1500).

The value of the performance ratio increases for lar-

ger values of the aspect ratio l/df. For the geometry of

this case, the two-dimensional model is only applicable

provided that l=df > ð2=
ffiffiffi
p

p
� 1Þri=df , that is when rðsÞo

is greater than
ffiffiffi
2

p
ri. If l=df 6 ð2=

ffiffiffi
p

p
� 1Þri=df then the

two-dimensional mathematical model no longer repre-

sents the geometry.

The values of the performance ratio, PR, obtained

from the one-dimensional theory and the numerical

solution of the two-dimensional model are plotted

against the aspect ratio, l/df, in Fig. 7(a). The one-dimen-

sional theory appears to be an excellent approximation

for the prediction of the performance ratio for the

two-dimensional model. In order to get a better under-

standing of the qualitative behaviour of the above

dependence, we define the relative percentage error, see

also Marin et al. [1],

errðPRÞ ¼ PRðnumÞ � PRðanÞ

PRðanÞ � 100; ð45Þ

where PR(an) and PR(num) are the analytical and the

numerical values for the performance ratio, respectively.

Fig. 7(b) illustrates the evolution of the error err(PR)

given by expression (45) with respect to the reduced fin

length, l/df, obtained for the square fin assembly using

various BEM discretisations. The error is very depen-

dent upon the number of boundary elements, especially

so for values of the aspect ratio l/df less than about 100.

However, for the largest number of boundary elements,

N = 400, the error is always negative, but the value over

the entire range of aspect ratios is within �0.5%. Hence

the one-dimensional theory is an excellent prediction

for the polygonal fin with two tubes on a square pitch

for this fixed value of the maximum fin effectiveness,

fmax = 224.50.

The results for the second set of calculations are dis-

played in Fig. 8(a) and (b), respectively. Again, the per-

formance ratios for the one-dimensional representation

of the equivalent radial rectangular fin and the two-

dimensional model with three different numbers of
boundary elements are plotted against the maximum

effectiveness over the range illustrated in Fig. 5 by the

horizontal dashed line. There appears to be excellent

agreement between the one-dimensional approximation

and the two-dimensional model over the full range.

The percentage error given by Eq. (45) for the second

set of results are plotted in Fig. 8(b) over the range of

fmax values. Although not presented here, it is reported

that similar results have been obtained for square fin

assemblies with df = 0.1 · 10�3 m, as well as for various

values of the ratio between the temperatures of the

tubes, namely ðT 2
b � T1Þ=ðT 1

b � T1Þ 2 f0.10; 0.50g.
In order to explain the results presented in Fig. 8(b),

we have to account for the nature of the fundamental

solution (33) for the modified Helmholtz equation and

the role played by the maximum fin effectiveness, fmax,
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Fig. 8. (a) The analytical and the numerical values for the

performance ratio PR, and (b) the error err(PR), as functions

of fmax, obtained for the square fin assembly with

a = 20.0 W m�2 K�1, df = 0.2 · 10�3 m, ri = 7.0 · 10�3 m,

rðsÞo ¼ 28.49� 10�3 m, i.e. l/df = 78.70 constant, ðT 2
b � T1Þ=

ðT 1
b � T1Þ ¼ 0.90 and N 2 {100,200,400} boundary elements.
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in the non-dimensionalisation process (4) of the govern-

ing equation (1) and the boundary conditions (2) and

(3). Although for a fixed value of the reduced fin length,

l/df, i.e. the outer radius of the circle which encloses a

single square fin, rðsÞo , the inner radius (outer radius of

the tube), ri, and the fin length, df, are fixed, the dimen-

sions (geometry) of the domain occupied by the dimen-

sional fin assembly do not change for various values of

the maximum fin effectiveness, fmax, the geometrical

non-dimensions of the domain occupied by the dimen-

sionless model vary with respect to the maximum fin

effectiveness, fmax, as can be noticed from Eqs. (8)–

(13). For example, the values for the dimensionless outer

radius of the circle which encloses a single square fin,

RðsÞ
o , and the inner radius, Ri, obtained with fmax 2

{224.50,600,1000} are given by RðsÞ
o ¼ 0.63 and Ri =

0.17, RðsÞ
o ¼ 0.23 and Ri = 0.05, and RðsÞ

o ¼ 0.11 and

Ri = 0.03, respectively. When using a large number of

boundary elements to discretise the boundary of such
domains, the distance, r(Xm, Xn), from any collocation

point, Xm, to the midpoint, Xn, of any boundary element

has very small values and, in addition, r(Xm, Xn) �
r(Xm, Xn+1). Since the modified Bessel functions of the

second kind of orders zero and one, K0 and K1, respec-

tively, have a strong singularity as the argument ap-

proaches zero, the integrals given by Eqs. (40) and (41)

cannot be computed accurately in such cases. Hence it

is expected that for large values of the maximum fin

effectiveness, fmax, the use of N = 200 or N = 400 bound-

ary elements to discretise the non-dimensional domain

occupied by the square fin assembly will provide highly

ill-conditioned BEM matrices and, therefore, the numer-

ical results will deteriorate. It can be seen from Fig. 8(b)

that the choice of the three BEM meshes with

N 2 {100,200,400} is suitable for fmax 6 170, in the

sense that the absolute value of the errors obtained using

the aforementioned BEM discretisations decreases with

respect to refining the mesh size. However, the errors ob-

tained using N 2 {100,200,400} reach approximately

the same value of about �0.30% for fmax = 170 and this

corresponds to a dimensionless domain characterised by

RðsÞ
o ¼ 0.83 and Ri = 0.20. If the value for the maximum

fin effectiveness becomes large, i.e. fmax P 675 for

N = 200 and fmax P 225 for N = 400, and hence the

boundary of the non-dimensionalised domain under

investigation becomes small then the absolute value of

the errors for the performance ratio numerically ob-

tained using N = 200 and N = 400, respectively, starts

increasing, as can be seen from Fig. 8(b). At the same

time, the numerical results obtained for the fin perfor-

mance ratio by discretising the boundary of the dimen-

sionless domain with N = 100 elements are very

accurate, i.e. jerr(PR)j 6 0.15%, showing that this mesh

is sufficiently fine for such small domains. To summa-

rise, in the case when the value of the reduced fin length,

ł/df, is fixed and the maximum fin effectiveness, fmax, is

varied, the finest BEM discretisation of the boundary

corresponding to the domain occupied by the dimen-

sionless fin assembly depends on the value of the maxi-

mum fin effectiveness considered, which is a parameter

in the non-dimesionalisation process, and it should be

chosen carefully such that the integrals given by Eqs.

(40) and (41) can be computed accurately and the

BEM matrices are not highly ill-conditioned.

Overall, from the numerical results presented and dis-

cussed in this section we can conclude that the BEM, in

conjunction with the two-dimensional approach, pro-

vides very good estimates for the fin performance ratio

for a polygonal fin assembly with two tubes on a square

pitch and these are in a very good agreement with the

results given by considering the design charts for the

equivalent rectangular radial fin in the framework of

the one-dimensional theory of heat flow along fins, see

Figs. 4 and 5. However, the BEM mesh should be

chosen carefully since it strongly depends upon the
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geometrical dimensions and thermal conductivity of the

fin assembly, as well as the coefficient of convective heat

transfer, due to the nature of the fundamental solution

for the modified Helmholtz equation and the role played

by the maximum fin effectiveness in the non-dimension-

alisation process of the governing partial differential

equation. The agreement found between the two-dimen-

sional theory and the equivalent one-dimensional radial

rectangular representations means that the present

design techniques, which use the concept of fin effi-

ciency, are still acceptable. This occurs even though a

two-dimensional fin efficiency definition does not exist.
7. Conclusions

A polygonal fin with two tubes arranged on a square

pitch has been extensively analysed according to the

two-dimensional theory. A semi-analytical solution has

been obtained by the BEM and this solution is shown

to be convergent, stable and consistent. This numerical

method has increased accuracy due to the use of Green�s
integral identities and, furthermore, the solution func-

tion and its normal derivative at the boundary are simul-

taneously predicted. Only the boundary of the solution

domain needs to be discretised, unlike the domain dis-

cretisation methods such as the finite-difference and fi-

nite element methods

The temperature distributions within the polygonal

fin and the resultant heat flows to the surrounding air

have been predicted for typical geometries and operating

conditions in evaporators and condensers used in the

refrigeration industry. The fin performance ratio con-

cept has been used to present the two-dimensional tem-

perature distributions and the heat flows. These values

over a wide range of system parameters are shown to

be almost identical to the analytical values obtained

for a one-dimensional radial rectangular fin with the

equivalent surface area of the polygonal fin and certainly

well within engineering accuracy. Hence the heat flows

can be predicted with confidence by the simple one-

dimensional theory. Typical design charts are also pre-

sented for these predictions.

The two-dimensional analysis has also revealed the

presence of conductive paths between the two tubes

when there are significant temperature differences be-

tween the tubes. However, for this single fin, the heat

flow to the surrounding air is identical to that predicted

by the one-dimensional theory. The hotter tube ex-

changes more heat in the two-dimensional analysis, the

additional heat compensates for the heat flow to the

colder tube and provides the heat which the colder tube

would have transferred. This is analogous to the so-

called detrimental transverse conduction paths found

in plate-fin heat exchangers, i.e. the half-fin assumption.

Further studies detailing the two-dimensional analysis of
polygonal fin assemblies with more than two tubes pass-

ing through them are on-going and they are approached

using fast BEM procedures, such as the conjugate gradi-

ent method (CGM), see e.g. Golub and O�Leary [22] and
the references therein.
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